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A simplified method of ab initio calculation of electron 
states in relativistic magnetics: 11. Ferrimagnets and 
antiferromagnets 

S A  Ostanin and V P Shirokovskii 
Physics-Technical Institute, Academy of Sciences of USSR, Ural Branch. 132 Kirov 
Street, SU-426001, Irhevsk, USSR 

Received 2 July 1990, in final form 18 March 1991 

Abstract. A technique ofelectron states calculation in a collinear two-sublattice ferrimagnet 
and antiferromagnet basedon aderivationof the Diracequation by the relativisticKorringa- 
Kohn-Rostoker method, is presented. The scheme suggested can be easily generalized to 
systems with several atoms in the crystalline and magneticcell, 

1. Introduction 

In our previous paper [l] a simplified technique of calculation for collinear ferromagnets 
based on the relativistic Green function (RGF) method was presented. The approach 
suggested can be easily applied to the collinear two-sublattice ferrimagnet and anti- 
ferromagnet. 

Consider a crystal lattice at the sites of which atoms with different magnitudes and 
spin moments which are opposite in direction are located, so that the structure has two 
atoms (with different spins) in the unit cell of the new lattice. Denote the vectors of the 
original lattice by R,, those of the reciprocal lattice by K ,  and the reduced wavevector 
by k. Let T,, Q, and q be the corresponding quantities for the new extended lattice, 
hl and h, being the vectors of its base. (This lattice will be called the magnetic lattice.) 
Denoting the volumes of the unit cell and Brillouin zone of the crystal lattice by Q and 
9, and the corresponding quantities for the magnetic lattice by QM and Q,,, we 
obviously have in this case QM = 2Q and QB = 2QBM, 

Choose further the origin of coordinates so that hl = 0. Then h, = h is one of the 
vectors R,  and, consequently, the joining of all the vectors Tp and h + Tp coincides with 
the set of vectors R,. Similarly, in reciprocal space the lattice defined by vectors Q, can 
be divided into two sublattices whose sites are specified by vectorsK" and K + K,. 

The lattice of CsCl type can be an example of the above structure, if atoms with 
different spins are located at the points of its unit cell h ,  = 0 and h, = (l,l, l)a/2 = h (a 
is the lattice constant). ThenR, are the vectors of the BCC lattice, K. forms the reciprocal 
FCC lattice and k vanes within the first Brillouin zone of the BCC lattice. In turn, Tp and 
Q, form simple cubic lattices, q vanes within its own Brillouin zone (half as large) and K 
can be set equal to 2n(O,l,O)/a, for example. Note, by the way, that antiferromagnetic 
chromium has such a structure when its small non-collinearity is neglected. 
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2. General formalism 

The technique for calculating the electronic structure of the above simplest ferrimagnets 
and antiferromagnets within the  fo formalism can be developed quite by analogy with 
[ l ] .  The main points of our approach are identical with the statements presented in [Z- 
41. The distinctions between these techniques have been discussed in detail in [ l ] ,  

Again, instead of the Dirac equation we shall consider the equivalent equation for 
the large component Y of the Diracfour-component spinor (see equation (10) in [l]): 
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A Y + ~ E - ( V + A V U ~ ) ] Y  -(W'/W)(CTXP)*(UXV)Y=O. (1) 

Here q ( i  = x ,  y ,  z )  are the Pauli matrices, Pis the unit vector, 

w = 1 f ( E -  v)/2 (2) 
and cis the velocity of light. 

The potential V + AV 0; involved in (1) is to be described in more detail. Since the 
magnetic lattice under consideration is a lattice with a base, then inside the magnetic 
cell there are two muffin-tin (MT) spheres centred at the points hp Within these spheres 
the potentials are spherically symmetric. Let the Oz axis be oriented along the spin 
direction so that the positive semi-axis coincides with the positive spin orientation on 
the first atom of the base. Then for the first site the quantities V and A V  have the same 
meaning as before, i.e. 

v, =&(VI+ + VI-) AV = 4(Vl+ - VI-) (3) 
where VI+ and VI- are the potentials acting on the electrons with different spin orien- 
tations. Forthe other site we also introduce an average potential and an additional term 
caused by the spin polarization: V2 and AV2. We put further formally 

V2+ = Vz + AV2 V2- = V2 - AV2 ( 4 )  
although it is clear that the meaning of these quantities will differ for ferrimagnets and 
antiferromagnets. 

In each of the MT spheres the two-component spinor is represented as a product of 
the radial functions g(;)+ by the spherical harmonics 

11'. - 

where r; is the radius vector measured from the jth point of the magnetic cell, I is the 
orbital quantum number and p is the projection of the total angular momentum onto 
the Oz axis. Substituting ( 4 )  into (1) yields, by analogy with [I], the two following sets 
of radial equations (see equation (13) in [l]): 

gill.+ (1)' + ( z / r ) g g +  + [W,(E - V,+) - !([ + 1)/r2]gk;+ 

= (w; /w,)UkkT+ - [ ( P  - W l g i L +  1 + SpV( !+  l)z - p 2  ( l / r )gg , -n  

=(w;/wj)Ukg0' Ill. - + [ @ + i ) / r ] g j t _ }  + S , ~ ( [ + i ) 2 - p 2  ( l / r ) g { i , + l  

(64 

(6b) 
(S, = p/ lpl ;  the index j labelling r is omitted, although of course r = lril.) Each set of 

giL- + (z/r)gi:- + [Wi(E - Vi-) - I ( /  + 1j / r2]g i : -  
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equations has two linearly independent solutions regular at zero; therefore, the general 
solution of (1) inside the MT spheres can he given in the form 

ti) (v = 1,2 ; j  = 1,2; p = m + 1) with arbitrary coefficients Cl,,,". 

as follows [5]:  
It is convenient to write the empty-lattice Green function for a structure with a base 

where E = E(l  + E/c2), and 'j and rr are the radius vectors measured from the cor- 
responding base sites. Making use of this Green function, one can represent the general 
solution of (1) outside the MT spheres (for zero potential) in the following way: 

where @!) are arbitrary functions, Q$ is the volume of the jth MT sphere, and ri is a 
vector measured from its (this sphere) centre and terminating beyond the MT spheres. 

With such an approach the dispersive equation is obtiined from the standard con- 
dition of smooth joining of the solutions 'Yy) and 'Y, through the MT spheres: 

(10) 
v ? ( r J )  = v u ( r j )  

( J / J r ) [ @ ( r j ) ]  = @ / W [ ~ I I ( ~ , ) ]  
with lql = rsi, where rsj is the radius of the jth sphere. It is natural for our problem to 
consider the radii of the MT spheres as being equal; so the index j labelling r, and Qm 
will be omitted hereafter. 

Depending on the origin of r and r' , one can construct four expansions of the Green 
function (8) in termsof spherical harmonics [6]: 

where = G, j ,  and n2 are the spherical Bessel and Neumann functions, respectively, 
and Bih,l,mp are the structure constants of the lattice with base. Substituting expansion 
(11) into (9) and integrating over r;,, yields the following representation for the solution 
(1) outside the MT spheres: 

0 (i) where b,,, , because of the arbitrariness of 0 , are arbitrary constants themselves. 
Further it is necessary to substitute expansions (7) and (12) into relations (lo), to use 

the orthogonality of the spherical harmonics Yh(Pj), and to obtain a system of algebraic 
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equationsin the unknown Cjf," and bj;*, the condition of the solvability of which results 
in the main dispersive equation. The necessary calculations are presented in appendix 
1. It also seems useful to compare formulae (7) and (12) with equations (15) and (19) of 
[l] to ensure close analogy of the general formalism. 
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B" + W + + ( l )  w c - ( l )  1 B'2 0 

W+(l )  B" + w - - ( l )  I 0 B '2 

B 0 I B22 + W"(2) w+-(2) 
I 

0 8" ; w-+(2)  BZ + W--(2) 

= 0. (13) 

where is the unit matrix of the same size as the blocks in (13). As a result, the dispersive 
equation (13) becomes 



A ,  + W++ W+- 

W-+ A , . +  W--  

AWt+ AW+- 

AW-+ AW-- 

w"' = f[WSS'(l) + WSS'(2)I 

AWss' = I[Wss'(2) - Wss'(l)]. 

AW++ AW+' 
AW-+ AW-- 

A 2  + Wt+ IV+- = 0. (17) 

W-+ A2 + w-- 

With such a form for the dispersive equation the process of spectrum formation can 
be described in another way. The spin-polarized states are formed at two conjugate 
points of the k-space by a site-averaged potential. These states are mixed at each point 
kjowing to the average spin-orbit interaction, while intermixing of the states at different 
points kj occurs because the potentials are different. 

Equationsoftheform(13)or (17)doactuallydescribe thesimplestfemmagnet when 
the MT potentials at sites of the magnetic cell base are different, i.e. the magnetic 
moments of the base atoms differ in magnitude and are anticollinear. These equations 
cannot be simplified without further approximations. The more interesting case of an 
antiferromagnet gives more concrete expression to our formalism. 

3.2. Antiferromagnets 

The feature peculiar to a two-sublattice antiferromagnet is that the mean values of the 
potentials at the magnetic-cell base sites are equal and the 'polarizing' additional terms 
AV U, are opposite in sign. The latter can be taken into account by merely changing the 
sign before AV. So 

V-C A V  j =  1 v. 
It [ V T  A V  j = 2. 

Then, after writing explicit expressions for sets ( 5 )  at the first and the second sites and 
comparing them, it is clear that we can always put 

g;: =g;j  g;! = - g;;. (20) 
These relations actually resulting from the symmetry of Hamiltonian (1) are here 
accepted as a formal mathematical fact. 

By direct substitution of (20) into equation (A1.3) of appendix 1 one can see that 

AI,@) = AS(1) 

ACi(2) = A1:7(1) (21) 
- AI;'(l) 

and, hence, 
w&:l>mt (2) = W&&< (1) 
W' - (22) lm:llm.(2) = - w l ~ r 6 , ( l ) .  

So the spectrum of the simplest antiferromagnet can be calculated by finding the 
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scatteringphase cotangents and constructing the dispersive equation (17) with the use 
of relations (22). 

S A Ostanin and V P Shirokovskii 

3.3. Limiting cases 

One can most easily proceed to ferromagnetic order. In a ferromagnet the base sites are 
obviously equivalent; therefore Wss(l) = (2). Then, in the dispersive equation 
(17), all A P s '  are equal to zero and it is divided into two equations of lower order: 

With the assumption that the reduced wavevector k does vary within the Brillouin zone 
of the original lattice the index j can be omitted and the resulting dispersive equation is 
quite identical with equation (22) of [l]. 

Proceeding to the non-relativistic version of the theory according to equation (39) 
of [l] consists in neglecting the blocks which are non-diagonal in spin in equation (13) 
or (17). This leads to partition with respect to the spin of each of the dispersive equations 
into two: 

or 

A , + W S S  AWss 

A ,  + Wss 

That is, for each spin orientation a separate branch of the spectrum is forming. Hybrid- 
ization of states on various sites (at different points &,) occurs owing to the structure 
factor BIZ (the potential difference AWsS). The number of spectrum brancheswillremain 
the same with different potentials at the base sites. 

Since in the non-relativistic limit the m(p)-dependence of the diagonal matrix 
elements W&.,,,. disappears (see equation (39) of [l]) we have for an antiferromagnet 

WSS(2) = w q l )  (25) 
and, therefore, 

&[W++(l) + W--(l)]  = w ( 2 6 4  wt+ = w-- = 

AW-- = -AW++ I[W"(l) - W--(l)] = AW. (26b) 
Then the form of the non-relativistic dispersive equations forantiferromagnets becomes 
much simpler: 

It isseen from the formulae presented (especially (27b)) that the four spectrum branches 
in an antiferromagnet are joined in pairs. 
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The non-relativistic dispersive equations discussed in this section are worth com- 
paring with those obtained in [q where the non-relativistic variant was used from the 
very beginning. 

4. Conclusions 

To conclude we would like to point out some possibilities of the above approach in 
discussing the electron structure of systems with spin order. 

(i) Uniformity of the scheme for calculating the electron structure of crystals with 
different magnetic order (paramagnets, ferromagnets, antiferromagnets and ferri- 
magnets) enables one to treat within the common theoretical model the change in 
electronic structure with change in the magnetic state of a material. It seems possible 
to estimate which of the magnetic states is energetically most advantageous. 

(ii) The scheme suggested can be easily generalized to systems with several atoms in 
the crystalline and/or magnetic cell. 

Appendix 1 

The system of equations in the unknown coefficients Cl:,. bh,= IS as follows (the indices 
1, .u on the left-hand side are omitted): 

(1) . 

and 

(m = p - $, m' = p + 1) and only the presence of rhejth site index distinguishes it from 
that previously obtained (equation ( A l . l )  of appendix 1 in [l]). Consequently, having 
repeated the same calculations as before, one can get 

L: { ~ & ~ . p m ~ ~ l p ( j )  + r16ji' ah,rrmaAG*(,IIb2*+ 
j'.l'm' 

( A 1 . 2 ~ )  
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(A1.26) 

Appendix 2 

Let us separate the sum over Q, in (8) into two parts over K, and to take outside the 
factors not depending on the summation index: 

exp[i(q + K,) . (ri +hi  - ri. -hi.)] 
(q+K, )2  -E’ 

1 exp[i(q+K + K , )  . (rj +hi -ri. -hy)] 
--E Q n  Iq+#C+K,(2 -E’ 

+ exp[i(q + K )  . (hi - k,‘)] 

(A2.1) 

It is easy to see that the expressions in large parentheses in the last two lines are none 
other than the Green functions of the initial crystalline lattice at the points q and g + K. 

(A2.2) 

(A2.3) 
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Figure 1. One forty-eighth of the Brillonin zone of a BCC lattice rHNP and its regular 
reflection rH’N’P‘. 

Note that the vector q + K can go beyond the Brillouin zone of the original lattice; 
so in the general case we get kz = q + K + K, where K is one of the reciprocal lattice 
vectors. Since the addition of the reciprocal lattice vector K to q + K results only in 
renumbering the terms of the second sum (A2.1), we shall not revert to this any longer. 

For illustration consider the example given in section 1. One forty-eighth of the 
Brillouin zone of a BCC lattice r”HP and its regular reflection r”’H’P’ are shown in 
figure 1. The polyhedron rNXP represents one forty-eighth of the Brillouin zone of the 
magneticlatticeofCsC1. Letqlieinr”XP.Thenq + K(K = 2n(O,l,O)/a)fallsoutside 
the limits of the BriUouin zone of the ECC lattice. Putting K = Zn(O,Z,O)/a we get k, = 
q + K + Kin the polyhedron RV’H‘P’. 
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